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Way-too brief history of Haskell use at Galois

e We have been using Haskell since company’s founding (1999).

e Cryptol (one of our first major tools) first publicly released in 2008,
later released as open-source in 2014.

e Many formal verification tools and libraries, including SAW (2012),
Crucible (2013), and What4 (2013), are written in Haskell.

|galois| © 2026 Galois, Inc.



Galois uses Haskell in many projects
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Formal Specification and Verification
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Formal Specification and Verification

e Specification: describing a system’s design, features,
requirements, and intended behavior (i.e., a blueprint)
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Formal Specification and Verification

e Specification: describing a system’s design, features,
requirements, and intended behavior (i.e., a blueprint)

e Formal specification: mathematically rigorous design techniques
(logic, type systems, etc.)

e Formal verification: mathematically proving that a system’s
implementation conforms to its specification
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Formal Specification



A

Specifying program behavior using Cryptol N/

Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.
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Specifying program behavior using Cryptol =)
Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.

pairOfBitvectors : ([8], [16])
pairOfBitvectors = (255, 65535)
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Specifying program behavior using Cryptol N/

Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.

pairOfBitvectors : ([8], [16])
pairOfBitvectors = (255, 65535)

f1ipAllBits : [8] -> [8]
flipAllBits bits = map complement bits
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Executing Cryptol specifications
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Executing Cryptol specifications

Cryptol> flipAllBits ©
255

Cryptol> flipAllBits 255
0

Cryptol> flipAllBits 127
128

|galois| © 2026 Galois, Inc.



Proving properties about Cryptol specifications
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Proving properties about Cryptol specifications
Cryptol> :prove \(x : [8]) ->

flipAllBits (flipAllBits x) == x
Q.E.D.
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Proving properties about Cryptol specifications

Cryptol> :prove \(x : [8]) ->
flipAllBits (flipAllBits x) == X
Q.E.D.

Cryptol> :prove \(x : [8]) ->
flipAllBits x == x
Counterexample
(\(x : [8]) -> flipAllBits x == x) Ox00 = False
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Talking to SMT solvers using What4
e To prove Cryptol [ Cryptol property J

properties, we translate
Cryptol code into an
intermediate language
called What4 [

l T Is property true/false?

What4 formula J
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Talking to SMT solvers using What4
e To prove Cryptol { Cryptol property J

properties, we translate

Cryptol code into an
intermediate language l T Is property true/false’?
called What4

e What4 can easily be { VWhat4 formula J
compiled into formulas
that SMT solvers (e.g., l T Is formula satisfiable?
Z3) can check for
satisfiability [ 73 J

SMT solver
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Design choice: how to talk to SMT solvers

Two competing options for how to communicate with SMT solvers:
1. Invoke SMT solver binaries as subprocesses (using Haskell’s

process library)
2. Use SMT solvers’ C APlIs (via Haskell’s FFI)
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Design choice: how to talk to SMT solvers

Two competing options for how to communicate with SMT solvers:
1. Invoke SMT solver binaries as subprocesses (using Haskell’s
process library)

2. Use SMT solvers’ C APlIs (via Haskell’s FFI)

What4 picks option (1).
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Design choice: when not to use Haskell

Cryptol and What4 both depend on an external C library (LibBF) to
handle arbitrary-precision floating-point arithmetic.
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Design choice: when not to use Haskell

Cryptol and What4 both depend on an external C library (LibBF) to
handle arbitrary-precision floating-point arithmetic.

Why:
e It’'s a very mature library: not many updates required
e |[t’s a very small library: easy to ship in a self-contained Haskell

package without users needing to install external C libraries
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Design choice: different libraries, different code styles
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Design choice: different libraries, different code styles

e Cryptol, generally speaking, is written using Haskell2010 plus a
mild number of GHC language extensions

e Mostly a product of the era in which Cryptol was first written
(before most GHC language extensions were commonplace)
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Design choice: different libraries, different code styles

e Cryptol, generally speaking, is written using Haskell2010 plus a
mild number of GHC language extensions

e Mostly a product of the era in which Cryptol was first written
(before most GHC language extensions were commonplace)

e What4 is written in a very different style of Haskell (lots of GADTs,
type families, fancy type system features, etc.)

e Written with the goal of making SMT formulas type-correct by
construction
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Cryptol Haskell code What4 Haskell code
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Cryptol Haskell code What4 Haskell code

data Type
= TCon !TCon ![Type]
| TVar TVar
| TUser !Name ![Type] !Type
| TRec !'(RecordMap Ident Type)
| TNominal !'NominalType ![Type]
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Cryptol Haskell code

data Type
= TCon !TCon ![Type]
| TVar TVar
| TUser !Name ![Type] !Type
| TRec !'(RecordMap Ident Type)
| TNominal !'NominalType ![Type]
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What4 Haskell code

data BaseTypeRepr (bt :: BaseType) :: Type where

BaseBoolRepr :: BaseTypeRepr BaseBoolType
BaseIntegerRepr :: BaseTypeRepr BaselntegerType
BaseRealRepr :: BaseTypeRepr BaseRealType
BaseBVRepr

(1 <= w) =>

' (NatRepr w) ->

BaseTypeRepr (BaseBVType w)
BaseFloatRepr

' (FloatPrecisionRepr fpp) ->

BaseTypeRepr (BaseFloatType fpp)



HFCS
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HFCS (Haskell fancy code spectrum)

Simple Fancy
(Haskell2010) (many language
extensions)

C ——
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HFCS (Haskell fancy code spectrum)

Simple Fancy
(Haskell2010) (many language
extensions)
Cryptol What4
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Formal Reasoning



The challenge

How do we take popular imperative programming languages (C, Rust,
Java, etc.) and reason about them formally?

S

—

Java

-Go M
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Crucible

Crucible is a library for symbolic execution of imperative code:
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&
Crucible

Crucible is a library for symbolic execution of imperative code:

e Symbolic: keeps program inputs abstract, enabling reasoning
about multiple paths through a program simultaneously.
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&
Crucible

Crucible is a library for symbolic execution of imperative code:

e Symbolic: keeps program inputs abstract, enabling reasoning
about multiple paths through a program simultaneously.

e [Execution: interprets (simulates) a program, producing
mathematical representations (What4) of the program as output.
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Typical Crucible workload

Imperative program

uint32_t f(uint32_t a[2], uint64_t idx) {
return a[idx];

}
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Typical Crucible workload

Imperative program W

uint32_t f(uint32_t a[2], uint64_t idx) {J +[Crucible @ }

return a[idx];

~o .
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Typical Crucible workload

Imperative program W

uint32_t f(uint32_t a[2], uint64_t idx) {J +[Crucible @ }

return a[idx];

Program output

\(a : Vector Bv32) (idx : Bv64) ->
arrayIndex a idx

~o .
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Typical Crucible workload

Imperative program \1

uint32_t f(uint32_t a[2], uint64_t idx) {J +[Cruoible @ }

return a[idx];

: v
‘ What4 .
Program output Side conditions
i \(a : Vector Bv32) (idx : Bv64) -> 0 <= idx && idx < 2 |
! arrayIndex a idx i

~o .
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Crucible’s flavor of Haskaell
Crucible’s Haskell style is largely inspired by What4 (lots of GADTs)
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Crucible’s flavor of Haskell
Crucible’s Haskell style is largely inspired by What4 (lots of GADTs)

Simple Fancy
(Haskell2010) (many language
< extensions)

T Crucible
Cryptol What4
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Simulating C using Crucible

|galois| © 2026 Galois, Inc.



Simulating C using Crucible

e C is a big, complicated language, so we first compile it to LLVM
(using the Clang compiler).
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(using the Clang compiler).
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executes the LLVM code.
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Simulating C using Crucible

e C is a big, complicated language, so we first compile it to LLVM
(using the Clang compiler).

e Crucible has an LLVM backend (Crucible-LLVM) that symbolically
executes the LLVM code.

e This means that we have to be able to ingest arbitrary LLVM code,
which imposes some technical challenges.
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__Z

Design choice: interfacing with LLVM in Haskell

One way to ingest LLVM'’s bitcode is to link against the LLVM API.
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One way to ingest LLVM'’s bitcode is to link against the LLVM API.

e Pros: offloads the task off to LLVM itself.
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Design choice: interfacing with LLVM in Haskell
One way to ingest LLVM'’s bitcode is to link against the LLVM API.

e Pros: offloads the task off to LLVM itself.
e (Cons: vastly complicates the packaging story (LLVM is a large

dependency), and LLVM libraries for Haskell aren’t very well
maintained.
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__Z

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.
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__Z

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

e Pros: simpler packaging story (no external LLVM dependency).
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Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

e Pros: simpler packaging story (no external LLVM dependency).

e Cons: LLVM’s bitcode format changes often, which requires
frequent maintenance to keep up to date with new LLVM versions.
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Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

e Pros: simpler packaging story (no external LLVM dependency).

e Cons: LLVM’s bitcode format changes often, which requires
frequent maintenance to keep up to date with new LLVM versions.

We chose this option and wrote our own library.
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Simulating Rust using Crucible

To analyze Rust, we have multiple options:
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Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).
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Simulating Rust using Crucible

To analyze Rust, we have multiple options:
1. Simulate Rust code directly (but Rust is a big, complex language).

2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is
much, much more low-level than the Rust code).
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Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).

2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is
much, much more low-level than the Rust code).

3. Compile Rust to a mid-level intermediate language (MIR) in
between Rust and LLVM, then simulate that.
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Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).

2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is
much, much more low-level than the Rust code).

3. Compile Rust to a mid-level intermediate language (MIR) in
between Rust and LLVM, then simulate that.

We picked option (3).
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Simulating Rust using Crucible

e Unlike LLVM'’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.
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Simulating Rust using Crucible

e Unlike LLVM'’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.

e To work around this, we created our own Rust compiler plugin
(mir-json) that dumps MIR in the middle of compilation to a
custom, JSON-based format.
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Simulating Rust using Crucible

e Unlike LLVM'’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.

e To work around this, we created our own Rust compiler plugin
(mir-json) that dumps MIR in the middle of compilation to a
custom, JSON-based format.

e We then parse the JSON code into Crucible and symbolically
execute it.
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Design choice: ingesting LLVM vs. MIR
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Design choice: ingesting LLVM vs. MIR

e Unlike with LLVM, where maintenance revolves around supporting
new bitcode features, maintaining MIR support revolves around
keeping a compiler plugin up to date.
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Design choice: ingesting LLVM vs. MIR

e Unlike with LLVM, where maintenance revolves around supporting
new bitcode features, maintaining MIR support revolves around
keeping a compiler plugin up to date.

e We generally like to maintain Haskell code for ingesting other
languages, but maintaining code in other languages (e.g., Rust)
can also work.
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Formal Verification
(matching programs with specifications)



Verifying code against specs using SAW %

SAW (Software Analysis Workbench) is a tool for formally verifying

properties of imperative code (using Crucible) against high-level
Cryptol specifications.
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Program to verify Cryptol specification
(low-level) ) (high-level)
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Program to verify Cryptol specification
(low-level) =, (high-level)

v

{ Equivalent J
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Program to verify Cryptol specification
(low-level) =, (high-level)

v v

[ Equivalent J [ Unknown J

v

Solver timeout
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Program to verify Cryptol specification
(low-level) =, (high-level)

v v v

[ Equivalent J [ Unknown J [Not equivalent}

M \

Solver timeout Counterexample

|galois| © 2026 Galois, Inc.




Program to verify Cryptol specification
(low-level) =, (high-level)

v v v v

[ Equivalent } [ Unknown } [ Not equivalent J [ Simulation error J

M \ v

Solver timeout Counterexample Memory unsafety,
undefined behavior
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SAW'’s flavor of Haskell
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SAW'’s flavor of Haskell

SAW'’s uses a mix of simple and fancy Haskell styles.

Simple Fancy
(Haskell2010) (many language
< extensions)

T Crucible
Cryptol SAW What4
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Reflections on industrial use of Haskell
(Here come the hot takes!)



Simple Haskell versus fancy Haskell

e \We have used a variety of Haskell styles for different projects,
ranging from simple (Cryptol) to fancy (What4, Crucible).
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Simple Haskell versus fancy Haskell

e \We have used a variety of Haskell styles for different projects,
ranging from simple (Cryptol) to fancy (What4, Crucible).

Much of the “fanciness” arises from trying to emulate features of
dependent types in Haskell
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Simple Haskell versus fancy Haskell

Dependently Typed Haskell in Industry (Experience Report)

DAVID THRANE CHRISTIANSEN, Galois, Inc., USA
IAVOR S. DIATCHKI, Galois, Inc., USA

ROBERT DOCKINS, Galois, Inc., USA

JOE HENDRIX, Galois, Inc., USA

TRISTAN RAVITCH, Galois, Inc., USA

Recent versions of the Haskell compiler GHC have a number of advanced features that allow many idioms
from dependently typed programming to be encoded. We describe our experiences using this “dependently
typed Haskell” to construct a performance-critical library that is a key component in a number of verification
tools. We have discovered that it can be done, and it brings significant value, but also at a high cost. In this
experience report, we describe the ways in which programming at the edge of what is expressible in Haskell’s
type system has brought us value, the difficulties that it has imposed, and some of the ways we coped with the
difficulties.
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Advantages of fancy Haskell code

|galois| © 2026 Galois, Inc.



Advantages of fancy Haskell code

e Encoding properties about SMT queries using Haskell’s type
system has caught certain bugs early, before they made it to
production.

|galois| © 2026 Galois, Inc.



Advantages of fancy Haskell code

e Encoding properties about SMT queries using Haskell’s type
system has caught certain bugs early, before they made it to

production.
e This greatly increases our confidence about the correctness of our

code, even after performing large-scale refactors.
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Disadvantages of fancy Haskell code
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Disadvantages of fancy Haskell code

e Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.
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e Convincing GHC’s typechecker of certain facts about type-level
arithmetic can be surprisingly tricky.
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times in certain cases.
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Disadvantages of fancy Haskell code

e Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.

e Convincing GHC’s typechecker of certain facts about type-level
arithmetic can be surprisingly tricky.

e Heavy use of GADTs and type families results in very long compile
times in certain cases.

e Fancy Haskell code is more likely to trigger GHC bugs!
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Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since | first started using
the language (c. 2015), it is still lacking in the following areas:
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is more difficult than it ought to be).
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e Documentation: Haddock is surprisingly slow on large projects,
has some unintuitive default settings.
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Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since | first started using
the language (c. 2015), it is still lacking in the following areas:

e Code coverage (hpc is clunky, and achieving 100% code coverage
is more difficult than it ought to be).

e Documentation: Haddock is surprisingly slow on large projects,
has some unintuitive default settings.

e Minimizing GHC bugs: | wish there was something like CReduce
for GHC.
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Not-so-hot takes
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Not-so-hot takes

e Haskell is a great language for developing tooling for specification
and verification!
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Not-so-hot takes

e Haskell is a great language for developing tooling for specification
and verification!

e We aren’t afraid to use other languages in our tech stack if it
makes more sense to use them.
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Not-so-hot takes

e Haskell is a great language for developing tooling for specification
and verification!

e We aren’t afraid to use other languages in our tech stack if it
makes more sense to use them.

e We err on the side of simple Haskell, but we may reach for fancy
Haskell features if correctness is paramount.
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Any questions?

Links to some Haskell-based tools we maintain:

of:z40
A ' I https://tools.galois.com/cryptol
=)y, E 1

https://tools.galois.com/saw
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