
Ryan Scott
AmeriHac
February 2026

Developing Tools for Formal Specification
and Verification

Ryan Scott
AmeriHac
February 2026

Developing Tools for Formal Specification
and Verification (with Haskell)

3

© 2026 Galois, Inc.

Way-too brief history of Haskell use at Galois

4

© 2026 Galois, Inc.

Way-too brief history of Haskell use at Galois

● We have been using Haskell since company’s founding (1999).

5

© 2026 Galois, Inc.

Way-too brief history of Haskell use at Galois

● We have been using Haskell since company’s founding (1999).

● Cryptol (one of our first major tools) first publicly released in 2008,
later released as open-source in 2014.

6

© 2026 Galois, Inc.

Way-too brief history of Haskell use at Galois

● We have been using Haskell since company’s founding (1999).

● Cryptol (one of our first major tools) first publicly released in 2008,
later released as open-source in 2014.

● Many formal verification tools and libraries, including SAW (2012),
Crucible (2013), and What4 (2013), are written in Haskell.

7

© 2026 Galois, Inc.

Galois uses Haskell in many projects

8

© 2026 Galois, Inc.

Formal Specification and Verification

9

© 2026 Galois, Inc.

Formal Specification and Verification
● Specification: describing a system’s design, features,

requirements, and intended behavior (i.e., a blueprint)

10

© 2026 Galois, Inc.

Formal Specification and Verification
● Specification: describing a system’s design, features,

requirements, and intended behavior (i.e., a blueprint)

● Formal specification: mathematically rigorous design techniques
(logic, type systems, etc.)

11

© 2026 Galois, Inc.

Formal Specification and Verification
● Specification: describing a system’s design, features,

requirements, and intended behavior (i.e., a blueprint)

● Formal specification: mathematically rigorous design techniques
(logic, type systems, etc.)

● Formal verification: mathematically proving that a system’s
implementation conforms to its specification

Formal Specification

13

© 2026 Galois, Inc.

Specifying program behavior using Cryptol

Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.

14

© 2026 Galois, Inc.

Specifying program behavior using Cryptol

Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.

pairOfBitvectors : ([8], [16])
pairOfBitvectors = (255, 65535)

15

© 2026 Galois, Inc.

Specifying program behavior using Cryptol

Cryptol is a specification language, primarily intended for formally
specifying the behavior of cryptographic algorithms.

pairOfBitvectors : ([8], [16])
pairOfBitvectors = (255, 65535)

flipAllBits : [8] -> [8]
flipAllBits bits = map complement bits

16

© 2026 Galois, Inc.

Executing Cryptol specifications

17

© 2026 Galois, Inc.

Executing Cryptol specifications

Cryptol> flipAllBits 0
255

Cryptol> flipAllBits 255
0

Cryptol> flipAllBits 127
128

18

© 2026 Galois, Inc.

Proving properties about Cryptol specifications

19

© 2026 Galois, Inc.

Proving properties about Cryptol specifications

Cryptol> :prove \(x : [8]) ->
 flipAllBits (flipAllBits x) == x
Q.E.D.

20

© 2026 Galois, Inc.

Proving properties about Cryptol specifications

Cryptol> :prove \(x : [8]) ->
 flipAllBits (flipAllBits x) == x
Q.E.D.

Cryptol> :prove \(x : [8]) ->
 flipAllBits x == x
Counterexample
(\(x : [8]) -> flipAllBits x == x) 0x00 = False

21

© 2026 Galois, Inc.

Talking to SMT solvers using What4

● To prove Cryptol
properties, we translate
Cryptol code into an
intermediate language
called What4

Cryptol property

What4 formula

Is property true/false?

22

© 2026 Galois, Inc.

Talking to SMT solvers using What4
● To prove Cryptol

properties, we translate
Cryptol code into an
intermediate language
called What4

● What4 can easily be
compiled into formulas
that SMT solvers (e.g.,
Z3) can check for
satisfiability

Cryptol property

SMT solver

What4 formula

Is formula satisfiable?

Is property true/false?

23

© 2026 Galois, Inc.

Design choice: how to talk to SMT solvers

Two competing options for how to communicate with SMT solvers:

1. Invoke SMT solver binaries as subprocesses (using Haskell’s
process library)

2. Use SMT solvers’ C APIs (via Haskell’s FFI)

24

© 2026 Galois, Inc.

Design choice: how to talk to SMT solvers

Two competing options for how to communicate with SMT solvers:

1. Invoke SMT solver binaries as subprocesses (using Haskell’s
process library)

2. Use SMT solvers’ C APIs (via Haskell’s FFI)

What4 picks option (1).

25

© 2026 Galois, Inc.

Design choice: when not to use Haskell

Cryptol and What4 both depend on an external C library (LibBF) to
handle arbitrary-precision floating-point arithmetic.

26

© 2026 Galois, Inc.

Design choice: when not to use Haskell

Cryptol and What4 both depend on an external C library (LibBF) to
handle arbitrary-precision floating-point arithmetic.

Why:
● It’s a very mature library: not many updates required
● It’s a very small library: easy to ship in a self-contained Haskell

package without users needing to install external C libraries

27

© 2026 Galois, Inc.

Design choice: different libraries, different code styles

28

© 2026 Galois, Inc.

Design choice: different libraries, different code styles

● Cryptol, generally speaking, is written using Haskell2010 plus a
mild number of GHC language extensions

● Mostly a product of the era in which Cryptol was first written
(before most GHC language extensions were commonplace)

29

© 2026 Galois, Inc.

Design choice: different libraries, different code styles

● Cryptol, generally speaking, is written using Haskell2010 plus a
mild number of GHC language extensions

● Mostly a product of the era in which Cryptol was first written
(before most GHC language extensions were commonplace)

● What4 is written in a very different style of Haskell (lots of GADTs,
type families, fancy type system features, etc.)

● Written with the goal of making SMT formulas type-correct by
construction

30

© 2026 Galois, Inc.

Cryptol Haskell code What4 Haskell code

31

© 2026 Galois, Inc.

Cryptol Haskell code What4 Haskell code
data Type
 = TCon !TCon ![Type]
 | TVar TVar
 | TUser !Name ![Type] !Type
 | TRec !(RecordMap Ident Type)
 | TNominal !NominalType ![Type]

32

© 2026 Galois, Inc.

Cryptol Haskell code What4 Haskell code
data Type
 = TCon !TCon ![Type]
 | TVar TVar
 | TUser !Name ![Type] !Type
 | TRec !(RecordMap Ident Type)
 | TNominal !NominalType ![Type]

data BaseTypeRepr (bt :: BaseType) :: Type where
 BaseBoolRepr :: BaseTypeRepr BaseBoolType
 BaseIntegerRepr :: BaseTypeRepr BaseIntegerType
 BaseRealRepr :: BaseTypeRepr BaseRealType
 BaseBVRepr ::
 (1 <= w) =>
 !(NatRepr w) ->
 BaseTypeRepr (BaseBVType w)
 BaseFloatRepr ::
 !(FloatPrecisionRepr fpp) ->
 BaseTypeRepr (BaseFloatType fpp)
 …

33

© 2026 Galois, Inc.

HFCS

34

© 2026 Galois, Inc.

HFCS (Haskell fancy code spectrum)

Simple
(Haskell2010)

Fancy
(many language

extensions)

35

© 2026 Galois, Inc.

HFCS (Haskell fancy code spectrum)

Simple
(Haskell2010)

Fancy
(many language

extensions)

What4Cryptol

Formal Reasoning

37

© 2026 Galois, Inc.

The challenge

How do we take popular imperative programming languages (C, Rust,
Java, etc.) and reason about them formally?

38

© 2026 Galois, Inc.

Crucible

Crucible is a library for symbolic execution of imperative code:

39

© 2026 Galois, Inc.

Crucible

Crucible is a library for symbolic execution of imperative code:

● Symbolic: keeps program inputs abstract, enabling reasoning
about multiple paths through a program simultaneously.

40

© 2026 Galois, Inc.

Crucible

Crucible is a library for symbolic execution of imperative code:

● Symbolic: keeps program inputs abstract, enabling reasoning
about multiple paths through a program simultaneously.

● Execution: interprets (simulates) a program, producing
mathematical representations (What4) of the program as output.

41

© 2026 Galois, Inc.

Typical Crucible workload
Imperative program

uint32_t f(uint32_t a[2], uint64_t idx) {
 return a[idx];
}

42

© 2026 Galois, Inc.

Crucible

Typical Crucible workload
Imperative program

uint32_t f(uint32_t a[2], uint64_t idx) {
 return a[idx];
}

What4

43

© 2026 Galois, Inc.

Crucible

Typical Crucible workload
Imperative program

uint32_t f(uint32_t a[2], uint64_t idx) {
 return a[idx];
}

What4

Program output

\(a : Vector Bv32) (idx : Bv64) ->
arrayIndex a idx

44

© 2026 Galois, Inc.

Crucible

Typical Crucible workload
Imperative program

uint32_t f(uint32_t a[2], uint64_t idx) {
 return a[idx];
}

What4

Program output

\(a : Vector Bv32) (idx : Bv64) ->
arrayIndex a idx

Side conditions

0 <= idx && idx < 2

45

© 2026 Galois, Inc.

Crucible’s flavor of Haskell

Crucible’s Haskell style is largely inspired by What4 (lots of GADTs)

46

© 2026 Galois, Inc.

Crucible’s flavor of Haskell

Crucible’s Haskell style is largely inspired by What4 (lots of GADTs)

Simple
(Haskell2010)

Fancy
(many language

extensions)

What4Cryptol
Crucible

47

© 2026 Galois, Inc.

Simulating C using Crucible

48

© 2026 Galois, Inc.

Simulating C using Crucible

● C is a big, complicated language, so we first compile it to LLVM
(using the Clang compiler).

49

© 2026 Galois, Inc.

Simulating C using Crucible

● C is a big, complicated language, so we first compile it to LLVM
(using the Clang compiler).

● Crucible has an LLVM backend (Crucible-LLVM) that symbolically
executes the LLVM code.

50

© 2026 Galois, Inc.

Simulating C using Crucible

● C is a big, complicated language, so we first compile it to LLVM
(using the Clang compiler).

● Crucible has an LLVM backend (Crucible-LLVM) that symbolically
executes the LLVM code.

● This means that we have to be able to ingest arbitrary LLVM code,
which imposes some technical challenges.

51

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

One way to ingest LLVM’s bitcode is to link against the LLVM API.

52

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

One way to ingest LLVM’s bitcode is to link against the LLVM API.

● Pros: offloads the task off to LLVM itself.

53

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

One way to ingest LLVM’s bitcode is to link against the LLVM API.

● Pros: offloads the task off to LLVM itself.

● Cons: vastly complicates the packaging story (LLVM is a large
dependency), and LLVM libraries for Haskell aren’t very well
maintained.

54

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

55

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

● Pros: simpler packaging story (no external LLVM dependency).

56

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

● Pros: simpler packaging story (no external LLVM dependency).

● Cons: LLVM’s bitcode format changes often, which requires
frequent maintenance to keep up to date with new LLVM versions.

57

© 2026 Galois, Inc.

Design choice: interfacing with LLVM in Haskell

Another way to ingest LLVM bitcode is to write a native Haskell library
for parsing bitcode.

● Pros: simpler packaging story (no external LLVM dependency).

● Cons: LLVM’s bitcode format changes often, which requires
frequent maintenance to keep up to date with new LLVM versions.

We chose this option and wrote our own library.

58

© 2026 Galois, Inc.

Simulating Rust using Crucible

To analyze Rust, we have multiple options:

59

© 2026 Galois, Inc.

Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).

60

© 2026 Galois, Inc.

Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).
2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is

much, much more low-level than the Rust code).

61

© 2026 Galois, Inc.

Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).
2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is

much, much more low-level than the Rust code).
3. Compile Rust to a mid-level intermediate language (MIR) in

between Rust and LLVM, then simulate that.

62

© 2026 Galois, Inc.

Simulating Rust using Crucible

To analyze Rust, we have multiple options:

1. Simulate Rust code directly (but Rust is a big, complex language).
2. Compile Rust to LLVM, then simulate LLVM (but the LLVM code is

much, much more low-level than the Rust code).
3. Compile Rust to a mid-level intermediate language (MIR) in

between Rust and LLVM, then simulate that.

We picked option (3).

63

© 2026 Galois, Inc.

● Unlike LLVM’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.

Simulating Rust using Crucible

64

© 2026 Galois, Inc.

● Unlike LLVM’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.

● To work around this, we created our own Rust compiler plugin
(mir-json) that dumps MIR in the middle of compilation to a
custom, JSON-based format.

Simulating Rust using Crucible

65

© 2026 Galois, Inc.

● Unlike LLVM’s bitcode, Rust’s MIR doesn’t have a reliable on-disk
representation that we can ingest.

● To work around this, we created our own Rust compiler plugin
(mir-json) that dumps MIR in the middle of compilation to a
custom, JSON-based format.

● We then parse the JSON code into Crucible and symbolically
execute it.

Simulating Rust using Crucible

66

© 2026 Galois, Inc.

Design choice: ingesting LLVM vs. MIR

67

© 2026 Galois, Inc.

● Unlike with LLVM, where maintenance revolves around supporting
new bitcode features, maintaining MIR support revolves around
keeping a compiler plugin up to date.

Design choice: ingesting LLVM vs. MIR

68

© 2026 Galois, Inc.

● Unlike with LLVM, where maintenance revolves around supporting
new bitcode features, maintaining MIR support revolves around
keeping a compiler plugin up to date.

● We generally like to maintain Haskell code for ingesting other
languages, but maintaining code in other languages (e.g., Rust)
can also work.

Design choice: ingesting LLVM vs. MIR

Formal Verification
(matching programs with specifications)

70

© 2026 Galois, Inc.

Verifying code against specs using SAW

SAW (Software Analysis Workbench) is a tool for formally verifying
properties of imperative code (using Crucible) against high-level
Cryptol specifications.

71

© 2026 Galois, Inc.

Program to verify
(low-level)

Cryptol specification
(high-level)

.BC

 SAW

72

© 2026 Galois, Inc.

Equivalent

Program to verify
(low-level)

Cryptol specification
(high-level)

.BC

 SAW

73

© 2026 Galois, Inc.

Equivalent Unknown

Solver timeout

Program to verify
(low-level)

Cryptol specification
(high-level)

.BC

 SAW

74

© 2026 Galois, Inc.

Equivalent Not equivalentUnknown

Solver timeout Counterexample

Program to verify
(low-level)

Cryptol specification
(high-level)

.BC

 SAW

75

© 2026 Galois, Inc.

Equivalent Not equivalent Simulation errorUnknown

Solver timeout Counterexample Memory unsafety,
undefined behavior

Program to verify
(low-level)

Cryptol specification
(high-level)

.BC

 SAW

76

© 2026 Galois, Inc.

SAW’s flavor of Haskell

77

© 2026 Galois, Inc.

SAW’s flavor of Haskell

SAW’s uses a mix of simple and fancy Haskell styles.

Simple
(Haskell2010)

Fancy
(many language

extensions)

What4Cryptol
Crucible

SAW

Reflections on industrial use of Haskell
(Here come the hot takes!)

79

© 2026 Galois, Inc.

Simple Haskell versus fancy Haskell

● We have used a variety of Haskell styles for different projects,
ranging from simple (Cryptol) to fancy (What4, Crucible).

80

© 2026 Galois, Inc.

Simple Haskell versus fancy Haskell

● We have used a variety of Haskell styles for different projects,
ranging from simple (Cryptol) to fancy (What4, Crucible).

● Much of the “fanciness” arises from trying to emulate features of
dependent types in Haskell

81

© 2026 Galois, Inc.

Simple Haskell versus fancy Haskell

● We have used a variety of Haskell styles for different projects,
ranging from simple (Cryptol) to fancy (What4, Crucible).

● Much of the “fanciness” arises from trying to emulate features of
dependent types in Haskell

82

© 2026 Galois, Inc.

Advantages of fancy Haskell code

83

© 2026 Galois, Inc.

Advantages of fancy Haskell code

● Encoding properties about SMT queries using Haskell’s type
system has caught certain bugs early, before they made it to
production.

84

© 2026 Galois, Inc.

Advantages of fancy Haskell code

● Encoding properties about SMT queries using Haskell’s type
system has caught certain bugs early, before they made it to
production.

● This greatly increases our confidence about the correctness of our
code, even after performing large-scale refactors.

85

© 2026 Galois, Inc.

Disadvantages of fancy Haskell code

86

© 2026 Galois, Inc.

Disadvantages of fancy Haskell code

● Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.

87

© 2026 Galois, Inc.

Disadvantages of fancy Haskell code

● Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.

● Convincing GHC’s typechecker of certain facts about type-level
arithmetic can be surprisingly tricky.

88

© 2026 Galois, Inc.

Disadvantages of fancy Haskell code

● Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.

● Convincing GHC’s typechecker of certain facts about type-level
arithmetic can be surprisingly tricky.

● Heavy use of GADTs and type families results in very long compile
times in certain cases.

89

© 2026 Galois, Inc.

Disadvantages of fancy Haskell code

● Fancy code generally takes longer to train engineers to work with
than simple code, which can increase development time.

● Convincing GHC’s typechecker of certain facts about type-level
arithmetic can be surprisingly tricky.

● Heavy use of GADTs and type families results in very long compile
times in certain cases.

● Fancy Haskell code is more likely to trigger GHC bugs!

90

© 2026 Galois, Inc.

Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since I first started using
the language (c. 2015), it is still lacking in the following areas:

91

© 2026 Galois, Inc.

Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since I first started using
the language (c. 2015), it is still lacking in the following areas:

● Code coverage (hpc is clunky, and achieving 100% code coverage
is more difficult than it ought to be).

92

© 2026 Galois, Inc.

Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since I first started using
the language (c. 2015), it is still lacking in the following areas:

● Code coverage (hpc is clunky, and achieving 100% code coverage
is more difficult than it ought to be).

● Documentation: Haddock is surprisingly slow on large projects,
has some unintuitive default settings.

93

© 2026 Galois, Inc.

Assorted thoughts on Haskell tooling

While Haskell tooling has improved quite a bit since I first started using
the language (c. 2015), it is still lacking in the following areas:

● Code coverage (hpc is clunky, and achieving 100% code coverage
is more difficult than it ought to be).

● Documentation: Haddock is surprisingly slow on large projects,
has some unintuitive default settings.

● Minimizing GHC bugs: I wish there was something like CReduce
for GHC.

94

© 2026 Galois, Inc.

Not-so-hot takes

95

© 2026 Galois, Inc.

Not-so-hot takes

● Haskell is a great language for developing tooling for specification
and verification!

96

© 2026 Galois, Inc.

Not-so-hot takes

● Haskell is a great language for developing tooling for specification
and verification!

● We aren’t afraid to use other languages in our tech stack if it
makes more sense to use them.

97

© 2026 Galois, Inc.

Not-so-hot takes

● Haskell is a great language for developing tooling for specification
and verification!

● We aren’t afraid to use other languages in our tech stack if it
makes more sense to use them.

● We err on the side of simple Haskell, but we may reach for fancy
Haskell features if correctness is paramount.

98

© 2026 Galois, Inc.

Any questions?

Links to some Haskell-based tools we maintain:

https://tools.galois.com/cryptol

 https://tools.galois.com/saw

